

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Changelog

The noteworthy changes for each PGTrunk version are included here.
The format is based on [Keep a Changelog] and this project adheres to [Semantic Versioning].
For a complete changelog, see the [commits] for each version via the version links.

[0.2.0] (2022-01-26)

	Add support for sequences (nepalez)

	Fix inheritance of attribute aliases (nepalez)

	Fix documentation for rules (nepalez)

[0.1.3] (2022-01-20)

	Add support for rules (nepalez)

	Fix CI/CD flow (olleolleolle)

	Fix documentation (nepalez)

[0.1.2] (2022-01-17)

	Fix registry of custom types (nepalez)

[0.1.1] (2022-01-16)

	Fix inline documentation for methods added to ActiveRecord::Migration (nepalez)

[0.1.0] (2022-01-14)

This is a first public release (nepalez)

Supported features:

	tables

	indexes (separated from tables)

	check constraints (separated from tables)

	foreign keys (including multi-column ones)

	views

	materialized views

	functions

	procedures

	triggers

	custom statistics

	enumerable types

	composite types

	domains types

[0.1.1]: https://github.com/nepalez/pg_trunk/releases/tag/v0.1.1
[0.1.0]: https://github.com/nepalez/pg_trunk/releases/tag/v0.1.0

[Keep a Changelog]: http://keepachangelog.com/
[Semantic Versioning]: http://semver.org/
[commits]: https://github.com/nepalez/pg_trunk/commits/master

 # Contributing

	Fork the repository.

	Run bin/setup, which will install dependencies and create the dummy
application database.

	Run rake to verify that the tests pass against the version of Rails you are
running locally, and that the code is styled properly.

	Make your change with new passing tests, following the existing style.

	Write a [good commit message], push your fork, and submit a pull request.

	CI will run the test suite on all configured versions of Ruby and Rails.
Address any failures.

[good commit message]: http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Others will give constructive feedback. This is a time for discussion and
improvements, and making the necessary changes will be required before we can
merge the contribution.

 # PGTrunk

Empower PostgreSQL migrations in Rails app

[![Gem Version][gem-badger]][gem]
[![Build Status][build-badger]][build]

PGTrunk adds methods to ActiveRecord::Migration to create and manage
various PostgreSQL objects (like views, functions, triggers, statistics, types etc.)
in Rails.

This gem is greatly influenced by the [Scenic], [F(x)] and [ActiveRecord::PostgtresEnum] projects
but takes some steps further.

In addition to support of different objects, we are solving a problem of interdependency between them.
For example, you can create a table, then a function using its type as an argument,
then check constraint and index using the function:

```ruby
create_table “users” do |t|


t.text “first_name”
t.text “last_name”




end

# depends on the users table
create_function “full_name(u users) text” do |f|


f.volatility :immutable
f.strict true
f.parallel :safe
f.body <<~SQL.strip



	string_trim(
	SELECT COALESCE(u.first_name, ‘’) + ‘.’ + COALESCE(u.second_name, ‘’),
‘.’





)




SQL




end

# both objects below depend on the users and full_name(users)
# so they couldn’t be placed inside the create_table definition in the schema.

create_index “users”, “full_name(users.*)”, unique: true

# users.full_name is the PostgreSQL alternative syntax for the full_name(users.*)
create_check_constraint “users”, “length(users.full_name) > 0”, name: “full_name_present”
```

Notice, that we had to separate definitions of indexes and check constraints from tables,
because there can be other objects (like functions or types) squeezing between them.

Another difference from aforementioned gems is that we explicitly register
all objects created by migrations in the special table (pg_trunk).
This let us distinct objects created by “regular” migration from temporary ones
added manually and exclude the latter from the schema. We bind any object
to a particular version of migration which added it. That’s how only those
objects that belong to the current branch are dumped into the schema.rb.

As of today we support creation, modification and dropping the following objects:

	tables

	indexes

	foreign keys (including multi-column ones)

	check constraints

	views

	materialized views

	functions

	procedures

	triggers

	custom statistics

	enumerable types

	composite types

	domains types

	rules

	sequences

For tables and indexes we reuse the ActiveRecord’s native methods.
For check constraints and foreign keys we support both the native definitions inside the table
and standalone methods (like create_foreign_key) with additional features.
The other methods are implemented from scratch.

In the future other objects like aggregate functions, range types, operators, collations, and more
will be supported.

From now and on we support all versions of PostgreSQL since v10.

The gem is targeted to support PostgreSQL-specific features, that’s why we won’t provide adapters to other databases like [Scenic] does.

Documentation

The gem provides a lot of additional methods to create, rename, change a drop various objects.
You can find the necessary details [here](https://rubydoc.info/gems/pg_trunk/ActiveRecord/Migration).

Installation

Add this line to your application’s Gemfile:

`ruby
gem 'pg_trunk'
`

And then execute:

`shell
$ bundle install
`

Or install it yourself as:

`shell
$ gem install pg_trunk
`

Add the line somewhere in your ruby code:

`ruby
require "pg_trunk"
`

Development

After checking out the repo, run bin/setup to install dependencies. Then, run rake spec to run the tests. You can also run bin/console for an interactive prompt that will allow you to experiment.

To install this gem onto your local machine, run bundle exec rake install. To release a new version, update the version number in version.rb, and then run bundle exec rake release, which will create a git tag for the version, push git commits and the created tag, and push the .gem file to rubygems.org.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/nepalez/pg_trunk.

License

The gem is available as open source under the terms of the [MIT License].

[build-badger]: https://github.com/nepalez/pg_trunk/workflows/CI/badge.svg
[build]: https://github.com/nepalez/pg_trunk/actions?query=workflow%3ACI+branch%3Amaster
[gem-badger]: https://img.shields.io/gem/v/pg_trunk.svg?style=flat
[gem]: https://rubygems.org/gems/pg_trunk
[MIT License]: https://opensource.org/licenses/MIT
[Scenic]: https://github.com/scenic-views/scenic
[F(x)]: https://github.com/teoljungberg/fx
[ActiveRecord::PostgtresEnum]: https://github.com/bibendi/activerecord-postgres_enum
[wiki]: https://github.com/nepalez/pg_trunk/wiki

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

